Type 1 Architecture

MODEL ENACTMENT BASED ON USE OF THE CIM-BIOSYS INTEGRATING INFRASTRUCTURE
R H Weston and I A Coutts

MSI research Institute, Department of Manufacturing Engineering,

Loughborough University of Technology, Loughborough, Leicestershire,

LE11 3TU, United Kingdom

R.H. Weston@lut.ac.uk

Abstract
Properties of integrating infrastructures (IIS) are identified, with reference to enabling system integration on an enterprise-wide scale. These properties are used to highlight features of existing integrating infrastructures, including CIM-BIOSYS. Also described is the role of CIM-BIOSYS in enabling model enactment and hence a bridge to top-down, structured system design methods.

The Need for a Structured Approach to Creating Manufacturing Systems
In modern manufacturing enterprises computer systems have become essential tools, which properly used have enabled the delivery of higher quality products over shorter time scales. Here activities carried out by appropriate combinations of people, automated equipment and computational tools can be achieved more efficiently and effectively than by predecessor solutions. However, in seeking to optimize the operating characteristics of a manufacturing enterprise there remain major problems of unifying the goals and activities of individual processes, whilst retaining sufficient flexibility in the holistic systems formed. Here methods and tools are required which are capable of defining and constructing complex integrated systems in a manner which enables them to realize system-wide goals, where invariably those goals will continuously change with the characteristics of the consumer, supplier, labor and financial markets within which they operate. In particular, therefore, it is necessary to realize improved support for:

(i) formally specifying the way in which the 'entities'
 of a manufacturing enterprise should 'inter-operate'
. This needs to be achieved with sufficient realism and completeness to guide subsequent system implementation [1].

(ii) 'enacting'
 formal specifications so that system build and change can be achieved in a structured and effective manner [2].

This paper considers ways of facilitating (ii) having identified key benefits that can be realized from using 'integrating infrastructures (IIS)', which themselves offer computational means of implementing and supporting the operation of integrated manufacturing systems. Here research findings of the Manufacturing Systems Integration (MSI) research institute at Loughborough University of Technology (LUT), UK are described which led to the creation of the CIM-BIOSYS IIS.

Key Properties and Benefits from Using an Integrating Infrastructure
Figure 1 depicts the way in which an integrating infrastructure (IIS) can be used to integrate the runtime activities carried out by a number of manufacturing entities. It is not the purpose of the IIS itself to contribute functionality, this will be contained within the inter-operating components of the systems. Rather the purpose of the IIS is to facilitate an aggregation of that functionality by enabling and managing the required inter-operation. An IIS can thus be viewed as needing to satisfy the dual requirement of providing:

(i) an appropriate set of integration 'services', which collectively underpin the runtime integration of a number of entities, i.e. it is required to offer services which enable inter-operation.

(ii) a set of integration 'tools' which collectively define, manage and change associations formed between entities.

When used in combination, the 'services' and 'tools' of an IIS can unify the various activities carried out in a complex manufacturing enterprise, whilst maintaining sufficient flexibility to allow such systems to evolve over a period of time i.e. an infrastructure can have marked benefits in terms of dealing with complexity and change. Important advantages stem from an inherent separation of 'integration processes' from 'application processes', where the former are concerned with accomplishing system inter-operation and the latter with realizing system functionality. It is not necessary for an entity which uses IIS services to have knowledge of the way in which other system entities operate, but only needs a knowledge of how it should use IIS services. From the perspective of inter-operating software processes, they are not required to maintain a localized (or private) knowledge of the way in which integration is achieved; rather they only require knowledge of how to use an appropriate sub-set of the integration mechanisms supported by the IIS. As a direct result a significant simplification occurs, with respect to:

(i) the design of the software processes themselves and

(ii) an inherently linear increase in system complexity, as the number of inter-operating entities n increases (This as opposed to the n(n-1)/2 relationship found with ad-hoc pair-wise integrated systems).

Both of these simplifications are extremely important in the context of complex integrated manufacturing systems. In contemporary systems n can be extremely large, with inter-operation occurring between large numbers of people, computer systems and automated/semi-automated machines. Moreover, in response to a need for increasingly configurable, modular and distributed software systems that number can typically be expected to rise sharply over the next decade.

Of course, it is not practical to expect 'something for nothing' and the complexity needs to be handled somewhere. For example, knowledge must be retained about interrelationships and associations which must be formed between inter-operating entities. This paper will show that much of that knowledge can be defined, maintained and modified by using the IIS.

Another inherent property of using an IIS is that it promotes a natural decomposition of solutions, thereby separating them into more containable and hence soluble parts. Indeed advantages derived from this decomposition are manifested in various ways. Through the provision of a well defined 'service interface' an IIS facilitates the standardization of entities. It enables systems to be designed with a clearer focus on implementation independent issues related to what a system should be doing. Subsequent use of the IIS provides a means of dealing with implementation dependent issues, such as how synchronization and information sharing can be achieved. As a result, opportunities arise to use methods which are now commonplace in the field of software engineering (such as CASE tools) to design integrated solutions, this can reduce appreciably the engineering effort and time scales connected with integration projects. Subsequently the use of IIS tools can facilitate the mapping of reusable distributed software solutions onto a given set of physical resources (i.e. data repositories and machines, with their embedded computer software and hardware). This in turn provides means by which manufacturing systems can be more flexible than contemporary counterparts, with 'soft' connections established between entities. This gives rise to soft or flexibly integrated manufacturing systems which facilitate continuous improvement. Furthermore it should be mentioned that the ability to achieve a software based mapping of distributed software onto physical resources, offers means of establishing practical migration paths from the use of a legacy (i.e. previously installed base) of non-standard physical resources and software systems, towards systems which can be more readily and effectively integrated into their host environment.

Primary Components of an Integrating Infrastructure
Figure 2 depicts a generalized functional decomposition of an IIS which can be used to underpin the inter-operation of manufacturing entities. Within Figure 2 two broad distinctions are drawn between, on one hand, 'services' and 'tools' and, on the other hand, 'high' and 'low' level versions of these. The former distinction reflects the dual need for 'runtime inter-operation' and an ability to 'flexibly configure' solutions, whereas the latter emphasizes a natural decomposition between providing infrastructural support for inter-operating 'software processes' and providing infrastructural support for inter-operating 'manufacturing entities' (which typically will include one or more embedded software process).

Low level integration services encompass a variety of general purpose means of accomplishing the runtime integrated operation of computer software processes. In manufacturing enterprises as in many other systems which widely adopt the use of computational tools (including retailing, banking, tourism and publishing) software processes will be embedded within equipment and computer systems which typically will be distributed at different locations, possibly even at different sites around the globe. Hence typically integration services will need to resolve differences arising from heterogeneity in computer processing hardware, software, operating systems, networks, human interfaces and various data sources supported. They will also be required to support appropriate low level command and messaging protocol between interacting software processes as well as means of resolving differences in representing, interpreting, processing and storing information and knowledge.

High level integration services will embody domain knowledge (relating more specifically to manufacturing systems integration or indeed banking systems integration, etc.) to enable the runtime integration (or inter-operation) of distributed manufacturing applications. Here manufacturing applications are each likely to comprise: manufacturing processing equipment (which is controlled and monitored by one or more computer) and/or human decision and action makers (supported by computational tools), both of which may have many embedded software processes.

The definition and management tools of an IIS will need to facilitate system definition, management and change, providing structured access to the system in a manner which is appropriate to system builders, engineers, maintenance or supervisory personnel. It will be necessary to define, maintain and change the mapping of processes onto resources; for example, the location of software processes could be manually or automatically controlled by low level tools - such as in the event of failure or following a decision to re-optimize the performance of the system. It will also be necessary to define, maintain and change stored characteristics of the inter-operating entities and the way in which inter-operation is achieved, this by determining the way in which a chosen set of low and high level integration services are used. Tools will be required to oversee the operation (e.g., start up, close down, monitoring and debugging) of the system as will tools to facilitate different forms of human control over the system configuration and its operation. The distinction between high and low level IIS tools is made based on the same primary criterion as that for services; namely that high level tools will contain manufacturing domain knowledge in some form and as a result will be used to define, maintain and change the inter-operation of manufacturing entities.

Through decomposing application and integration issues, opportunities arise to simplify certain system management problems. For example, there is a much reduced need to duplicate integration knowledge concerning software and manufacturing application interaction. A reduced number of copies of that knowledge can be more easily handled, this avoiding many problems relating to consistency and integrity. Also inherent in the use of an IIS is the ability to positively support change, which in manufacturing systems can take a variety of forms and occur on different time scales. For example: inevitably changes are required during commissioning (e.g. resulting from incomplete and inaccurate specifications) and this type of change will occur on short and long time scales. Operational changes may occur for a wide variety of reasons and on a variety of time scales, which may require some level of dynamic reconfigurability in the system. Less frequently, the scope of the system will change as new manufacturing methods, processes and machines are adopted or included as part of a planned process of system evolution. Whatever the nature and time scale of the change, the separation of application and integration issues and the existence of definition and management tools will facilitate the required change processes. Indeed whether system change is initiated in a bottom-up or top-down manner, formalized means of realizing the change can be provided without the need to re-engineer significant proportions of system components, be they concerned with either application or integration issues.

The CIM-BIOSYS Low Level IIS
Over the period 1987 to 1990 the UK's ACME Directorate of the Science and Engineering Research Council (SERC) funded research at the MSI Research Institute of Loughborough University, leading to the definition and implementation of the CIM-BIOSYS (Computer Integrated Manufacturing - Building Integrated Open SYStems) IIS [3]. Essentially this study focused on the main issues raised in Section 3. Various versions of CIM-BIOSYS were produced and evaluated leading to a stable IIS core, which since 1991 has been released to third parties around the globe.

The internal functionality of the CIM-BIOSYS platform can be decomposed into four simple functional blocks as depicted in Figure 3 and explained below.

Service interface: this provides a consistent interaction mechanism for all integration services provided by the infrastructure. Example services currently offered include: establishing a logical (peer to peer) link to another application; sending data to an application; opening a file, etc.

Runtime manager: this controls all processes external to the infrastructure (i.e. applications and device drivers) and monitors any error conditions that might occur within it. An interface is provided which enables manual control of processes capable of interacting with CIM-BIOSYS; this provides a power facility for debugging and maintenance of integrated systems.

Configuration manager: this maintains all internal system configuration data and external configuration files. An interface is provided to enable manipulation of configuration data (such manipulations are also possible via the use of the configuration services offered to applications).

Driver interface: allows a variety of device drivers to interact with the infrastructure. Such device drivers accommodate both the diversity of functionality and range of communication protocols required to interact with system resources. Hence the device drivers allow an installed base of machines, software applications, databases and communication networks, within any given manufacturing organization, to be incorporated within integrated systems.

A Standard IIS Interface
A prime research focus of the second author has been to define and implent a 'standard' interface to low level IIS services, as depicted by Figure 4.

The IIS interface itself comprises inter-process communications, packet encode/decode and low level handshaking functions required to interact with the IIS. The current implementation assumes CIM-BIOSYS is used at the integration infrastructure, future versions will interface with different infrastructures. This layer insulates the other functional application blocks (and hence the application or system builder) from the different mechanisms/packet formats employed by various infrastructures.

To enable bottom-up system creation and a simplification of the application code a number of 'C' libraries have been produced, these enable user functionality to be implemented in conformance with the IIS interface (and thence in a way which is independent of the IIS used). These libraries are aimed at providing the 'essentials' required to interact with an integrating infrastructure without dictating (or doing so as little as possible) the format of the user (application) code. Hence no support for application functionality (e.g. Graphical User Interface, Data manipulation) is provided.

The 'Application Service Interface' is a suite of 'C' runtime functions which facilitate access to the integration services provided by an integration infrastructure. These functions are not specific to the infrastructure and so provide the application implementor with a neutral integration interface. The 'Application Event Manager' provides a consistent mechanism for event management (such as arrival of data packets on a file descriptor, timer events, etc.). These functions can be used by the application code and are used by both the application service and integrating infrastructure interfaces. Four versions have been produced to date, one for X window applications, one for Sun-view applications which possess no Graphical User Interface.

The 'Application Code' is provided by the application implementor which encodes the functionality and behavior required (this includes GUI's, etc.).

Importantly the current version of the 'Application Service Interface' provides a generalized IIS interface: it is used in a way which is independent of particular mechanisms used to implement IIS services and tools. Such a neutral interface is a vital prerequisite requirement of achieving model enactment in an implementation independent fashion.

An Approach to Model Enactment
Also as part of the second author's research study a model enactment capability has been conceived and implemented, based on the standard IIS interface described in section 5. Implementation has been based on the use of a Prolog environment for predicate transition Petri-Net execution. Choice of this environment was based on the following reasons:

(i) it provided a natural environment for predicate logic;

(ii) it offered the capability to extend its parser to allow user defined syntax (i.e. the transition syntax of Petri-Net models);

(iii) it facilitates incorporation of additional functionality (i.e. support for Petri-Net token counts);

(iv) its inherent ability to deal with the asynchronous nature of interacting elements (e.g. incoming message arrival is instantiated in the prolog database).

The CIM-BIOSYS Integrating Infrastructure was selected to provide the integration services required. A link between the execution environment and integrating infrastructure was established so that interactions described by the Petri-Net models can be realized. A functional decomposition of the environment created is illustrated in Figure 5. A brief description of each function block follows, with the exception of the IIS interface which was earlier described.

Cor e Prolog Environment: This is the "C prolog” system as defined by Fernando Pereira, July 1982, EdCAAD, Dept. of Architecture, University of Edinburgh.

Integration Service Interface: Within this layer CIM-BIOSYS integration services are represented as Prolog facts. By instantiating a given fact, integration service request are sent to CIM-BIOSYS. Responses from CIM-BIOSYS are instantiated in the prolog database. A couple of examples follow.

Send message "start function 3" (sequence number 21) to application "tom".

send_app(tom,21,"start function 3"0.

Retrieved data regarding object "pad positions" where attribute "no_of_legs"is equal to 2.

sel(pad_positions,"where no_of_legs = 2").

Transition Surface Syntax: This layer includes a parser which reads and evaluates both conditions and actions. The conditions determine if a particular petri-net transition will fire. If the condition is true the accompanying action is executed. Global variables are also supported by the parser. An example of the condition syntax follows:

If variable i is equal to 2 and variable j is less than 10, send message "hello world" to "fred" then increment variable i by 1.

on i=2&j<10dosend_app(fred,"hello world") @i is i+1.

Transition Execution Engine: Once an application is invoked this engine tests and fires the transitions, which represent the peti-net model.

Transition Descriptions (Model of Interation): This comprises of the list of transactions and global variables which form the petri-net model. An example follows:

Transition name "ln_fred", triggered when i is equal to 2 and j is less than 10. This transition establishes a link with "fred" and then increments i by 1.

transition (In_fred,((i=2)&(j<10)),(est_link(fred)@(i is I+1))).

Predicate transition Petri-nets have provided a satisfactory way of describing internal functional flow and external infrastructure interaction, but the Prolog environment used for their execution does not possess the runtime performance required for implementing complex systems.

It is intended to reimplement the model enactment facility as a "compiler/post processor" which will convert the transition descriptions into 'C' code. This code could then be "linked" with user supplied functionality to provide an application.

Conclusions
The paper has introduced classifications related to integrating infrastructures suitable for Manufacturing Systems Integration. Also described is a status report on MSI CIM-DIOSYS IIS where current focus is on using it in a generalized form to achieve model enactment. This line of research is a very important one which promises to bridge the gap between the ideal world of formal manufacturing systems modeling and real implementations of such systems.

Already the capabilities described have been used to enact CIM-OSA models [4] and are being developed to facilitate the enactment of Estelle specifications of distributed software systems.

Acknowledgements
The important contributions of all MSI researchers is fully acknowledged as is the forbearance and financial inputs from the UK's SERC.

References
[1] Weston, R.H. "Requirements and Trends in Manufacturing Systems" 10th NCMR, Loughborough, UD, Sept. 94.

[2] Weston, R.H. et al. "Information Modeling Methods and Tools for Manufacturing Systems" 27th ISATA, Aachen, Germany, Sept. 94.

[3] Coutts, I.A. et al. "Open Applications within Soft Integrated Manufacturing Systems", ICMA, Hong Kong, ICMA 92.

[4] Aguiar, M.W. "Systems Engineering Workbench centred on CIM-OSA." 10th CARS-FOF, Canada. 1994

� 'entities' is used here as a generic term, embracing the 'processes', 'computer systems', 'people', 'automated equipment' and other 'components' of an integrated system.

� the term 'inter-operate' is used to imply that the runtime operation of more than one entity is realized with a common purpose or goal in mind.

� the term 'enact' is used to imply the process of turning a specification or plan into a working solution. This process should be computer assisted and ultimately fully automated.

